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Abstract

This paper examines local parametric vibrations in the stay cables of a cable-stayed bridge. The natural
frequencies of the global modes are obtained by using a three-dimensional FE model. The global motions
generated by (1) sinusoidal excitations using exciter, (2) a traffic loading, and (3) an earthquake are
analyzed by using the modal analysis method or the direct integration method. The local vibration of stay
cable is calculated by using a model in which inclined cable is subjected to time-varying displacement at one
support during global motions. This paper describes the properties of the local vibrations in stay cables
under these dynamic loadings by using an existing cable-stayed bridge.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Previous studies show that local vibrations of large amplitude are induced in the stay cables
(hereinafter abbreviated to ‘cable’) of cable-stayed bridges under wind and traffic loading [1]. This
phenomenon has been confirmed in vibration tests on the Hitsuishijima Bridge [2], Yohkura
Bridge [1] and Tatara Bridge [3] in Japan. These vibrations are considered to be local parametric
vibrations (i.e., dynamic instability) in the cable due to excitation at the support by girder and/or
towers’ oscillation. Since multi-cable systems have been widely used in cable-stayed bridges, the
natural frequencies of the global modes are easily close to the natural frequencies of the cables and
the large-amplitude cables vibration becomes prone to be exhibited. Therefore, further research is
necessary on the parametric vibrations of cables in cable-stayed bridges.
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Kov!acs was the first to point out the possibility of parametric vibrations in the cables [4].
Analyses have been recently carried out in various fields, e.g., in Refs. [5–8]. Generally, large-
amplitude vibrations of cables can be induced when the natural frequency of global modes in a
cable-stayed bridge is either close to that of the cables (the second unstable region) or twice that of
the cables (the principal unstable region). Takahashi and co-workers studied the relationship
between the natural frequencies of the global modes and those of cables and the response
characteristics of local parametric vibrations in cable-stayed bridges in Japan [9]. In their study,
the cables were given periodic time-varying displacements at the supports. However, the study did
not explain the local vibrations in the cables of cable-stayed bridges under environmental and
service loadings such as wind, earthquake and traffic loading, which contain a broad spectrum of
excitation frequencies. There is little literature on the local vibrations of cables that take into
account the vibration characteristics of the whole bridge system.
This paper examines in great detail the local parametric vibrations in cables reflecting the

vibration characteristics of an existing steel cable-stayed bridge subjected to all forms of excitations
including sinusoidal excitations, a traffic loading and an earthquake. Based on a three-dimensional
FE model, the global dynamic motion of the bridge is calculated by the modal analysis method in
the case of sinusoidal excitations and traffic loading or the direct integration method for the seismic
analysis. The analysis of the local vibrations of stay cables, which are subjected to time-varying
displacement at the supports during global motions, are done and their properties are discussed.

2. Studied bridge

The bridge analyzed in this paper is a steel cable-stayed bridge in Japan. The bridge has three
spans. The main span is 350m and the side spans are 160m. The towers are A-shaped, and the
cables are a two-plane, multiple system. A general view of the bridge is shown in Fig. 1. The cables
are numbered sequentially from the side span to the main span as shown in Fig. 1.

3. Analytical method

The natural frequencies of the global modes are obtained from a three-dimensional FE model
of the cable-stayed bridge. Global vibration analysis under dynamic excitations is then performed,
and the responses of the global motions are obtained. Finally, the local vibration of the cables is
analyzed. Since the responses of local parametric vibrations in the cables cannot be evaluated in
the global analysis by using a FE model, a vibration model of the cable including parametric
vibration and forced vibration is used. In this model, the inclined cable is subjected to time-
varying displacement at one support during global motions.
The dynamic actions considered in this paper are (1) sinusoidal excitations, (2) a traffic loading,

and (3) an earthquake.

3.1. Global vibration analysis of a cable-stayed bridge

The three-dimensional FE model developed in this study is shown in Fig. 2. The girder in this
model is a single central spine with offset links to the cable anchor points. The towers and piers
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are modelled using three-dimensional linear beam elements based on the actual cross-section
properties. The cables are modelled as linear truss elements with initial tension. The non-linear
behavior of cables due to their sags is taken into account by using an equivalent modulus of
elasticity [10]. Regarding the boundary conditions, the girder is free to move in the longitudinal

670,000

350,000160,000

1,000 2,800 119,700126,000 26,000 1,0002,80036,50036,50036,50036,500 126,000

160,000

119,700

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C13 C15 C17 C19 C20

C12  C14 C16 C18

22
,5

00
8,

20
0

3,
80

0
13

,5
00

16
,6

14
22

,0
00

57
,5

00 11
4 ,

00
0

6, 000

31, 000

30
,7

00
41

,6
00

10
,8

00
8,

10
0

11
,0

00
8,

00
0

 3,025  400  2,500   3,500   3,500   600  3,025

16,800

  4,800  7,200   4,800  

3,
08

0

Fig. 1. General view of the cable-stayed bridge (mm).

Q. Wu et al. / Journal of Sound and Vibration 261 (2003) 403–420 405



direction and restrained at the supports in the vertical and transverse directions. Only the
rotational component around the longitudinal axis is restrained. The tower bases are fixed in all
degrees of freedom.
The analysis methods of the global motions of the bridge are the modal analysis method in the

case of sinusoidal excitations and the traffic loading, and the Newmark b method (b ¼ 0:25) of
direct integration for the seismic analysis. The modal damping constant of all modes is assumed to
0.02 in the modal analysis. Rayleigh damping is employed in the direct integration and the
damping constant of the girder and towers is assumed to be 0.02.

3.2. Local parametric vibration analysis of cables

Amodel of an inclined cable on a cable-stayed bridge is shown in Fig. 3. The cable in this model
is fixed at one end and has time-varying displacements (X ðtÞ; Y ðtÞ) at the other end. It is assumed
that there is no restraint against rotation at the anchorage that is independent of the amplitude of
the cable vibration. A local vibration analysis of the cables is carried out by using the calculated
relative response between the girder and towers as the displacement input at the cable supports.
The non-linear equation of motion of a flat-sag cable is obtained as follows:
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where u and v are the displacements in the axial direction (x direction) and the normal line
direction (y direction) of the cable as shown in Fig. 3, m is the mass per unit length of the cable, P

Fig. 2. FE model.
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is the initial tension of the cable, DP is the additional tension produced by local vibration in the
cable, v0 ¼ mg=2Pð�x2 þ LxÞ is the initial shape of the cable, E is Young’s modulus of the cable,
A is the cross-sectional area of the cable, L is the span of the cable, g is the gravitational
acceleration and t is time.
The following equation describes the assumed responses of the cable, which receives

displacement X ðtÞ in the x direction and displacement Y ðtÞ in the y direction at a support:

vðx; tÞ ¼ 1�
x

L

� �
Y ðtÞ þ

XN
i¼1

TiðtÞsin
ip
L

x; uðx; tÞ ¼ 1�
x

L

� �
X ðtÞ; ð3Þ

where Ti tð Þ is the time function of the ith mode of the cable.
Substituting Eq. (3) into Eqs. (1) and (2) yields a non-linear equation of motion of a cable.

Upon applying a Galerkin method, the following non-linear equation of motion of the first mode
considering the damping is obtained:
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Fig. 3. Model of a stay cable and its boundary conditions.
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is the natural circular frequency of the string

o1 ¼
p
L

ffiffiffiffi
P

m

r
1þ

8L3A2
1

p4
1

X0

� �
;

is the natural circular frequency of the cable considering sag, h is the damping constant and y is
the inclined angle of the cable.
In the above equation, the term B1ðtÞ is the parametric excitation term and B4ðtÞ is the forced

vibration term. The damping constant of the each cable is assumed to be 0.001, based upon
experimental data in the bridges of Japan.
The response of a cable subjected to support excitations is obtained by solving Eq. (4) with the

Runge–Kutta method.

4. Global modes and local modes

The computed natural frequencies of the global modes of the bridge are shown in Table 1. The
natural frequencies of the cables, obtained by using o1 of Eq. (4), are listed in Table 2. The
dynamic interaction between the bridge and the cables has been analyzed recently by various
researchers [11–17]. Table 2 also lists the natural frequencies of local cable vibration obtained by
using FE analysis with a multi-element model considering the sag in each stay cable. The natural
frequencies of the single cable model obtained from Eq. (4) agree well with those obtained from
multi-element FE analysis. It can be said that the separation of cable vibrations from the global
vibration is valid in the present calculation.
Fig. 4 describes the relationship between the natural frequencies of the global modes and those

of the cables in the bridge. The figure shows the first natural frequencies of the cables
(corresponding to the second unstable region) and the doubled natural frequencies (corresponding
to the principal unstable region) [5].

Table 1

Natural frequencies and modal shapes

Modal shape Mode number Natural frequency (Hz) Character

Vertical mode 1st 0.310 Symmetric

2nd 0.423 Asymmetric

3rd 0.692 Symmetric

4th 0.815 Asymmetric

5th 0.931 Symmetric

6th 1.124 Asymmetric

7th 1.281 Symmetric

8th 1.402 Asymmetric

9th 1.566 Symmetric

Torsional mode 1st 1.192 Symmetric

2nd 1.979 Symmetric

3rd 2.081 Asymmetric
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Since the first natural frequencies of cables C18, C19 and C20 are in the vicinity of the natural
frequency of the 3rd vertical global mode, local parametric vibration in the second unstable region
may occur under period loading with this frequency. Similarly, the natural frequencies of the 4th,
5th and 6th vertical modes are close to the first natural frequencies of cables C4 and C17, C5 and
C15, and C12. Therefore, local parametric vibration in the second unstable region in these cables
may occur.

Table 2

First natural frequencies of cables (Hz)

Cable no. Analytical data Multi-element FE model

for cable vibration (16 links for every cable)

C1 0.585 0.592

C2 0.573 0.577

C3 0.749 0.753

C4 0.802 0.802

C5 0.920 0.920

C6 0.986 0.982

C7 1.062 1.062

C8 1.184 1.186

C9 1.164 1.164

C10 1.644 ( )a

C11 1.636 ( )a

C12 1.146 1.147

C13 1.162 1.163

C14 1.039 1.043

C15 0.962 0.959

C16 0.896 0.896

C17 0.781 0.780

C18 0.729 0.729

C19 0.616 0.616

C20 0.637 0.637

aFrequency is beyond frequency range considered.
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The natural frequencies of the 6th vertical mode, the 9th vertical mode, the 2nd torsional mode
and the 3rd torsional mode are close to twice of the first natural frequencies of cable C2, C17, C6
and C14, respectively. So local parametric vibration in the principal unstable region in those
cables may be expected.

5. Local vibration characteristics of cables under sinusoidal excitation

This section discusses the properties of local parametric vibrations in the cables of the cable-
stayed bridge under the sinusoidal excitation, which may be induced by an exciter during a
vibration test. The amplitude of the exciting force is assumed to be 50 kN.

5.1. Vertical sinusoidal excitation

As shown in Fig. 4, parametric vibrations in cables C18, C19 and C20 may be induced under
the 3rd vertical mode of the global modes. Therefore, the frequency of the vertical excitation is set
to that of the 3rd vertical global mode (symmetrical, 0.692Hz), and the excitation point is the
center of the main span.
Fig. 5 shows the maximum amplitudes of all cables under excitation. The amplitudes of cables

C18, C19 and C20 are greater than those of the other cables. In order to judge the characteristic of
those cables, the time responses and spectra of the girder and cable C19 are shown in Fig. 6. The
response of cable C19 under forced vibration, which neglects the term B1ðtÞ of Eq. (4), is also
shown to compare with the parametric vibration.
The ratio of the dominant frequency of the girder to that of C19 is approximately 1.0 and the

waveform of the parametric vibration is accompanied by beating. So it can be concluded that
the parametric vibration in the second unstable region occurs in those cables. Furthermore, the
amplitudes under parametric and forced vibration are of the same order.
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The cable vibration in the second unstable region has the same property under the frequencies
of the 4th vertical mode (0.815Hz), the 5th vertical mode (0.913Hz) and the 6th vertical mode
(1.124Hz).

5.2. Torsional–sinusoidal excitation

As shown in Fig. 4, local parametric vibration in the principal unstable region may be expected
when the frequency of the bridge is close to the natural frequency of the 6th vertical mode, the 9th
vertical mode, the 2nd torsional mode, etc. Analyses are done under sinusoidal excitations of
those frequencies. The results are shown in Table 3. Parametric vibration of cable in the principal
unstable region occurs only when the excitation frequency is equal to that of the 3rd torsional
mode.
Therefore, the following explains the local vibration of cables under the sinusoidal excitation

with the frequency of the 3rd torsional global mode.
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Two exciters are installed on each side of the quarter point of the center span and the bridge
was shaken in opposite phases with the frequency 2.081Hz, which is the natural frequency of the
3rd torsional global mode (asymmetrical).
Fig. 7 shows the maximum amplitudes of all cables under torsional–sinusoidal excitation. The

response of cable C14 is much larger than those of the other cables. Parametric vibration in the
principal unstable region occurs in cable C14 because the first frequency (1.039Hz) of cable C14 is
close to half the frequency of the excitation (2.081Hz).
Fig. 8 shows the time responses and spectra of the girder and cable C14. A large-amplitude

vibration is induced in cable C14 after about 2min of excitation, while the girder (0.010m)
vibrates steadily. The maximum amplitude of the cable reaches 0.725m, which is about 70 times
greater than that of the girder.
Furthermore, the analysis is carried out under exciting forces of 30 and 40 kN in order to

examine the effect of the magnitude of the exciting force. The relationship between the exciting
forces and the response of cable C14 is shown in Table 4. Time histories of its response to different
exciting forces are shown in Fig. 9. It can be observed that the transient time decreases as the
exciting force increases.

Table 3

Relation of frequencies and maximum amplitudes between global vibration and related cables

(1) Mode of bridge (2)Related cable (1)/(2) Maximum amplitude

Girder (m) Cable (m)

6th vertical mode 1.124Hz C2 0.573Hz 1.962 0.0127 0.0060

9th vertical mode 1.566Hz C17 0.781Hz 2.005 0.0025 0.0022

2nd torsional mode 1.979Hz C6 0.986Hz 2.007 0.0034 0.0019

3rd torsional mode 2.081Hz C14 1.039Hz 2.003 0.0096 0.725
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Fig. 7. Maximum amplitudes of the cables under torsional sinusoidal excitation (exciting force=50kN, frequency=

2.081Hz).
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The sensitivity of the cable amplitudes to the damping constant is shown in Table 5. The
maximum amplitude of the cable decreases and the transient time increases as the damping
constant increases. However, the effect of the damping on amplitude is relatively small in the case
of parametric vibration in the principal unstable region.

6. Local vibration characteristics of cables under traffic loading

In this section, the local parametric vibrations of cables in the cable-stayed bridge under traffic
loading are examined by using the bridge–vehicle–road surface model [18, 19].The displacement
response yðx; tÞ of the bridge at point x can be expressed as

yðx; tÞ ¼ fðxÞTqðtÞ; ð5Þ
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Table 4

Relationship between the exciting force and the response of cable C14

Exciting

force (kN)

Exciting

torsional moment (kNm)

Maximum amplitude

of girder (m)

Maximum amplitude

of cable (m)

Time needed to

reach maximum

amplitude (s)

30 367.5 0.00579 0.607 1223.3

40 490.0 0.00772 0.668 291.1

50 612.5 0.00964 0.725 193.0
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where fðxÞT is the modal matrix and qðtÞ is the generalized co-ordinate to the geometric co-
ordinate. The vehicle in the present analysis is a single-degree-of-freedom system as shown in
Fig. 10.
Upon applying the modal analysis method, the equation of motion for each mode using the

bridge–vehicle–road surface model can be written as

.qiðtÞ þ 2hioi ’qiðtÞ þ o2
i qiðtÞ ¼ fT

i fvðtÞ=mi; ð6Þ

.zðtÞ þ 2h0o0f’zðtÞ � ’yðvt; tÞ � ’rðtÞg þ o2
0fzðtÞ � yðvt; tÞ � rðtÞg ¼ 0; ð7Þ

fvðtÞ ¼ �ms .zðtÞ; ð8Þ

where .qi tð Þ is the ith normal co-ordinate, hi is the damping constant of the ith mode, oi is the
natural circular frequency of the ith mode, mi is the generalized mass of the ith mode, ms is the
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Fig. 9. Effect of the amplitude of the exciting forces on the responses in the principal unstable region of cable C14

(exciting frequency=2.081Hz).

Table 5

Relationship between the damping and the response of cable C14 (exciting force 50 kN)

Damping constant Maximum amplitude

of cable (m)

Time needed to reach

maximum amplitude (s)

0.001 0.725 193.0

0.002 0.684 229.5

0.003 0.645 280.5

0.004 0.605 365.1

0.005 0.561 527.5
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total mass of the vehicle, fvðtÞ is the force from the vehicle, zðtÞ is the displacement of the vehicle,
rðtÞ is the road roughness, h0 is the damping constant of the vehicle, o0 is the natural circular
frequency of the vehicle and v is the speed of the vehicle.
The power spectral density of the road surface roughness, as observed from a expressway in

Japan, is shown in Fig. 11 and can be expressed as

SRðOÞ ¼
A

O2 þ a2
; ð9Þ

where O is the frequency of the road surface (cycle/m), A is a parameter expressing the level of
road surface roughness and a is a parameter based on the observed result. In the present paper,
the road surface is assumed to be in the best condition when A ¼ 0:001 and a ¼ 0:05:
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The response of the bridge under a moving vehicle is obtained by solving Eqs. (6)–(8) with
Runge–Kutta method.
The various parameters of the vehicle used in this study are shown in Table 6. The speed of the

vehicle is 30 km/h.
Fig. 12 shows the maximum amplitudes of all cables under loading from a traveling vehicle. The

maximum responses of cables C9 and C12 are larger than those of the other cables. The natural
frequencies of cables C9 and C12 are 1.164 and 1.146Hz, respectively.
Fig. 13 shows the time responses and spectra of the girder and cable C12. The predominant

frequencies of the girder’s response are about 1.50 and 2.45Hz, while that of cable C12 is
1.146Hz. It may be assumed that parametric vibration in the principal unstable region is induced
in cable C12 because the ratio of the dominant frequency of the girder and that of C12 is
approximately 2.0. It can also be observed that the amplitude of the cable is about 3 times as large
as that of the girder. However, since the amplitudes of the cables are small, local vibrations will
not create any problems.

7. Local vibration characteristics of cables during an earthquake

This section examines the local parametric vibrations of cables in the cable-stayed bridge under
the ground motion.

Table 6

Parameters of single-degree-of-freedom vehicle

Weight ms (kN) 200

Frequency f0 (Hz) 2.60

Damping constant h0 0.03
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Fig. 12. Maximum amplitudes of cables under a moving vehicle (V=30km/h).
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The present analysis uses a moderate ground motion with a maximum acceleration of 1.00m/s2,
as shown in Fig. 14 [20]. It is applied in the longitudinal direction of the bridge. The duration time
is 25 s. and the time interval of numerical integration is 0.01 s.
Fig. 15 shows the maximum amplitude of all cables in the earthquake. There are no significant

differences among the responses of the cables.
Fig. 16 shows the time responses and spectra of the girder and cable C1, the response of which

is relatively large. The predominant frequencies of the girder response are the natural frequencies
of the global modes, while that of cable C1 under parametric vibration is also the natural
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frequency of itself. The waveform of cable C1 under parametric vibration is not accompanied by
beating. Therefore, it can be concluded that parametric vibration of the cables does not occur.

8. Concluding remarks

Local parametric vibrations in stay cables of an actual cable-stayed bridge reflecting the
vibration characteristics of the bridge subjected to excitations, including sinusoidal excitations, a
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Fig. 15. Maximum amplitudes of cables during the earthquake.
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traffic loading and an earthquake, are examined and discussed in detail. From the results of the
above analysis, the characteristics of local parametric vibrations in the cables of this bridge can be
summarized as follows:

(1) Parametric vibrations in the second unstable region in cables occur under vertical sinusoidal
excitation. The amplitude of the cable induced by parametric vibration is of the same order as
that induced by forced vibration.

(2) Parametric vibrations in the principal unstable region in cables occur under torsional
sinusoidal excitation, and its amplitudes are large. Parametric vibration in the principal
unstable region appears only after a considerable length of time has passed. This length of
time depends on the amplitude of the exciting force.

(3) Parametric vibrations in the principal unstable region in cables occur under traffic loading.
However, any local vibration will not produce any problems since the amplitudes of cables are
small.

(4) Parametric vibrations in cables do not occur even if a moderate ground motion with a
maximum acceleration of 1.00m/s2 is applied in the longitudinal direction of the bridge.
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